CBCS SCHEME

1'	17EC	17EC	1 / 17 %	17EC	1/84	1 / 15 1
7	EC	EC	M E .	M E 2	M E .	M E 2

Eighth Semester B.E. Degree Examination, July/August 2022 Fiber Optics and Networks

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. With help of neat diagram, explain the main block of an optical fiber communication.
 - (10 Marks) (10 Marks)
 - b. Explain the advantages, disadvantages and applications of OFC.

MINNES INSTITUTE OF THE ASSESSMENT

2 a. With a neat diagram, discuss the structure of single mode and multimode step index fiber with advantages of each type. (10 Marks)

OR

- b. Calculate the R.I of core and cladding materials of an fiber whose NA = 0.35 and $\Delta = 0.001$. (04 Marks)
- c. A step-index multimode fiber with NA = 0.20 supports 1000 modes at 850nm. What is diameter of core? How many does the fiber supports at 1320nm. (06 Marks)

Module-2

3 a. Explain different absorption mechanism in optical fiber.

- (10 Marks)
- b. Silica has an estimated fictive temperature of 1400K with an ISO thermal compressibility of 7×10^{-11} m²N⁻¹. RI and photo elastic coefficient for silica are 1.46 and 0.286 respectively. Determine attenuation in dB/km due to Rayleigh scattering in silica at $\lambda = 0.65$, 1 and 1.3km, K = Boltzman constant = 1.381×10^{-23} JK⁻¹. (10 Marks)

OK

4 a. Discuss inter modal dispersion with necessary equations.

(10 Marks)

b. Explain Macro and Micro bending losses with a neat diagram

(10 Marks)

Module-3

- 5 a. Draw the diagram of a typical GaAiAS double hetro structure LED along with energy band diagram and refractive index profile and explain. (10 Marks)
 - b. Discuss internal quantum efficiency and power in detail.

(10 Marks)

OR

- 6 a. Explain Fabry-Perot resonator cavity of laser with a neat diagram.
- (10 Marks)

- b. Explain the following:
 - i) Spontaneous emission
 - ii) Stimulated emission
 - iii) Quantum efficiency.

(06 Marks)

c. For an alloy $In_{0.74} + Ga_{0.26}$ As_{0.57} $P_{0.43}$ used in LED find wavelength emitted by the source. (04 Marks)

17EC82

Module-4

7 a. Explain the implementation of WDM networks with various types of optical amplifiers.

(10 Marks)

b. Explain MZI multiplex with necessary equations.

(10 Marks)

OR

8 a. Describe the principles of working of isolators and circulators, with a neat diagram.

(10 Marks)

b. With help of neat diagram, explain three possible EDFA configurations.

(10 Marks)

Module-5

- 9 a. Discuss in detail about optical networking terminology. Mention the merits and demerits of each. (10 Marks)
 - b. Describe optical networking node elements with a neat diagram.

(10 Marks)

OR

- 10 a. Explain the concept of wavelength routing with appropriate diagrams. (10 Marks)
 - b. With a neat diagram, explain the public telecommunication network overview (10 Marks)

* * * * *